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Abstract. We study the effects of magnetic impurities in the strongly correlated electron system
from the opent–J model where the two impurities are coupled to the electron system. The kinetic
energy of our model is nonlinear in the momentum of the electrons and it is integratable. The
interaction parameters can be changed from the ferromagnetic case to the antiferromagnetic case.
We obtain the thermodynamic Bethe ansatz equations for the excitation state. The effects of the
magnetic impurities on magnetization and charge fluctuation are studied. The finite-size correction
of the free energy due to impurities is obtained and some special limits of the system are discussed.
We find that the system has boundary bound states introduced by the impurities and formed by four
imaginary modes of the rapidities.

1. Introduction

The impurity models have attracted considerable interest in condensed matter physics since
magnetic Ni and nonmagnetic Zn impurity effects provide a simple way to understand the role
of electrons on the Cu–O plane and in one dimension even the smallest amount of defects may
drastically change the properties of the electron system. In the Kondo and Anderson impurity
models [1, 2], magnetic impurities are embedded in noninteracting metals. The magnetic
impurity is coupled to the Heisenberg spin chain by Andrei and Johannesson [3] with an
arbitrary spin, and extended to the Babujian–Takhtajan spin chain by Lee and Schlottmann
[4,5]. The Kondo problem is devoted to studying the effect due to exchange interaction between
the impurity spin and electron gas and in its original treatment the electron–electron interaction
is discarded. This is reasonable in three dimensions where the interacting electron system can
be described by a Fermi liquid. The recent advances in semiconductor technology enable
one to fabricate very narrow quantum wires which can be considered as one-dimensional and
furnish a real system of a Luttinger liquid. Edge states in a two-dimensional electron gas for
the fractional quantum Hall effect can also be considered as a Luttinger liquid [6]. Intense
effort and much progress has been made around the subjects using different approaches such
as renormalization techniques [7, 8], bosonization, boundary conformal field theory [9] and
non-Fermi liquid theory [10–12] .

The theory of the magnetic impurities in the Fermi liquid and Luttinger liquid [13,14] has
been recently studied where the few impurities are coupled with strongly correlated electron
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systems [15]. The underscreened Kondo effect is studied in the magnetic impurity model by
Karyn Le Hur and Coqblin [16]. In [17], the local magnetic moments around an impurity site
are considered. The exact solutions of the integrable models on the subjects are useful [18–20],
from which one can expect to draw definite conclusions. Indeed, Schlottmann and Zvyagin
introduced the impurity in the supersymmetrict–J model via its scattering matrix with the
itinerant electrons [21, 22]. Then, in principle, the Hamiltonian of the system and other
conserved currents can be constructed by the transfer matrix. They discussed the magnetic
impurities embedded in the Hubbard model [23]. Bedüfig et al solved the integrable model
with the impurity coupled with a periodict–J chain [24], in which the impurity is introduced
through local vertices. By taking into account the backward scattering, we discuss the effects
of the magnetic impurities in a strongly correlated electron system by using the open boundary
system [25–27] with the impurities at the open ends of the model. Based on Kane and Fisher’s
observation [8], we see this is advantageous and this programme has been used in [28–32].

The t–J model is one of the most fundamental systems of strongly correlated electrons
for providing understanding of the behaviour of the electrons for high-Tc superconductivity
[33, 34]. It describes the nearest-neighbour hopping of electrons with spin-exchange
interaction. By considering the very strong repulsive on-site Coulomb interaction, the doubly
occupied lattice sites are prohibited for the electrons so that there are only three possible
states at each lattice site for1

2 spin. Recently, the theory of magnetic impurities in Fermi
and Luttinger liquids [13,14] has been focused on the properties of the Luttinger liquid in the
t–J model [35–37] as discussed in [38]. Recently, Zvyagin found that in the case when the
impurity is connected to the host via a ‘weak link’ its low-energy behaviour coincides with that
of an impurity in a periodic chain. Schlottmann and Zvyagin consider a finite concentration of
magnetic impurities embedded in a one-dimensional lattice via scattering matrices [39]. Very
recently, the impurity model related to thet–J model was also studied in [40], and the hidden
Kondo effect in the correlated electron chain was investigated [41].

In [29], we studied the magnetic impurities with the1
2 spins in the framework of the open

SU(3) invariantt–J model. The electrons in the triplet states are scattered but those in singlet
states are not. Magnetic impurities with arbitrary spins are discussed in [32]. For the bulk the
model is isomorphic to the spin-1 Heisenberg chain withSU(3) invariance. It has no graded
super-algebra and corresponds to three bosonic degrees of freedom. The integrability of the
impurity model related to the traditionalt–J model, which has the graded FFB super-algebra,
and the one related toSU(3) invariantt–J model are studied in detail in [31].

In this paper we continue the analysis of the exactly solvable impurity model within the
framework of the open boundary traditionalt–J model where the electrons scatter in singlet
states. The Hamiltonian of this system can be written as

H = −P
{G−1∑
j=1

∑
σ=↑↓

(C+
jσCj+1σ +C+

j+1σCjσ )

}
P ± 2

G−1∑
j=1

Sj · Sj+1∓ 1
2

G−1∑
j=1

njnj+1

+JaS1 · Sa + Van1 + JbSG · Sb + VbnG (1)

whereC+
jσ (Cjσ ) is the creation (annihilation) operator of the conduction electron with spinσ on

the sitej ; Ja,b, Va,b are the Kondo coupling constants and the impurity potentials, respectively,
and can be parametrized asJa,b = ∓8/{(2Ca,b ∓ 1)(2Ca,b ± 3)}, Va,b = ±(3 − 4C2

a,b)/

{(2Ca,b ∓ 1)(2Ca,b ± 3)} with the arbitrary constantsCa,b; Sj = 1
2

∑
σ,σ ′ C

+
jσ σσ,σ ′Cjσ ′ is the

spin operator of the conduction electron;nj = C+
j↑Cj↑ + C+

j↓Cj↓ is the number operator of
the conduction electron;G is the length ( or site number ) of the system. We have set that
J = ±2 andV = ∓ 1

2 in the above Hamiltonian. The projectorP = ∏G
j=1(1− nj↑nj↓)

restricts the Hilbert space by the constraint of no double occupancy at one lattice point. In the
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first quantization the above Hamiltonian can be expressed by using translation operators [42].
The arrangement of this paper is as follows. In section 2, the low-field magnetization of the

impurity model is derived which means that the susceptibility also has logarithmic correction
when the impurities exist. In section 3, the charge fluctuation of the system is discussed for the
most important case, that is, the two electrons in the singlet state are scattered but they are not
scattered in a triplet state. Some results of the integration limits of the impurity model are also
presented. In section 4, the excitation of the system is described based on the thermal Bethe
ansatz equations. By minimizing the thermodynamic potential, we obtain the free energy of
the system with the magnetic impurities. The low-temperature limit and the high-temperature
behaviour of the system are discussed and the boundary bound states are obtained; the explicit
expression of the free energy due to magnetic impurities is especially given under the limits
of the interaction with the conduction band. Finally, we give the concluding remarks.

2. Magnetization

The impurity model (1) is exactly solvable and the Hamiltonian of the system can be
diagonalized [29, 31] by using the Bethe ansatz method. The integrability condition means
that the interaction parameters of the magnetic impurities with the conduction electrons have
special forms (for details see [31]). The distribution density functionsσ(k) andρ(k) satisfy
the integral equations

a(k,1) +
1

2G
σG(k) = σ(k) + σh(k) + [2]σ(k) + [1]ρ(k)

a(k,
1

2
) +

1

2G
ρG(k) = ρ(k) + ρh(k) + [1]σ(k)

(2)

for the ground state, whereσh(k) and ρh(k) are the hole distribution functions (also see
section 4), anda(λ, η) ≡ π−1η/(λ2 + η2). The functionsσG(k) andρG(k) are denoted by

σG(k) = a(k, Ca + 3
2) + a(k, Ca − 1

2) + a(k, Cb + 3
2) + a(k, Cb − 1

2)− a(k, 1
2)

ρG(k) = a(k, Ca + 1) + a(k, Cb + 1)
(3)

with the operator [n] defined as [43] [n]f (k) = ∫∞
−∞ a(k − k′, n2)f (k′) dk′ for n 6= 0, and

[0]f (k) ≡ f (k). Now we study the contributions of the magnetic impurities for the open
boundary conditions. We perform the calculations of the dependence of the magnetization and
valence of the impurity as functions of the external field, band filling and temperature along the
lines of [35,43] for the pure systems and [21] for the periodic cases. The finite-size corrections
for the ground state energies are studied in detail in [31]. We now consider the susceptibility
of the system, for convenience, only in the nonmagnetic case. Whenχs = V/2−3J/8= −1,
(notice that this quantity was interchanged in [35] but corrected in [15]) the magnetization
vanishes in the absence of an external field. We can apply an arbitrarily small magnetic field
so that the integration limitB is made much larger than any givenQ. By the use of Fourier
transformations of the Bethe ansatz equations for the ground state we can obtain the integral
equations in this case [15, 35]. By taking into accountB � Q, due to the small magnetic
field, we can solve the integral equations by iteration. In this way, we obtain the low-field
magnetization contributed by the magnetic impurities:

Sfz = −
e−πB

(2πe)
1
2

1L

(
1 +

1

4πB
+

ln 2B

(4πB)2
+ · · ·

)
(4)

where

1L = sign(Ca + 3
2)e
−|Ca+ 3

2 |π + sign(Cb + 3
2)e
−|Cb+ 3

2 |π − e−
π
2

+ sign(Ca − 1
2)e
−|Ca− 1

2 |π + + sign(Cb − 1
2)e
−|Cb− 1

2 |π . (5)
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The symbol function sign is defined as signA = 1 for A > 0, 0 forA = 0, and−1 for
A < 0. We callSfz the finite-size correction of the low-field magnetization in comparison with
the pure system with periodic case. By considering thatH is proportional to exp(−πB) the
susceptibility also has logarithmic correction when the impurities exist, which is similar to the
Heisenberg antiferromagnet [44] and thet–J model [35].

3. Charge fluctuations withχs = −1

For the ground state the magnetization vanishes in the absence of an external magnetic field
whenχs = −1. When the band is almost half-filled or almost empty, the solution of the
integral equation of the system has a simple form, which we now discuss. When the band is
almost half-filledQ is very small. Then the integral equation can be written as

σh(ξ) + σ(ξ)−
∫ Q

−Q
σh(ξ ′)G1(ξ − ξ ′) dξ ′ = G1(ξ) +

1

2G
RG(ξ) (6)

whereG1(ξ) is denoted by the expressionG1(ξ) =
∫∞
−∞ dω e−iωξe−

1
2 |ω|/(4π coshω2 ), and

RG(ξ) = (2π)−1
∫∞
−∞ dω e−iωξ σ̃G(ω)/(1 + ã(ω, 1)) with the wave denoting the Fourier

transform. This equation can also be solved by iteration. To first order inQ, the distribution
function has the form

σ(ξ) =
(

1 +
2Q ln 2

π

)
G1(ξ) +

1

2G

{
RG(ξ) +

Q

π
G1(ξ)

∫ ∞
−∞

dω
σ̃G(ω)

1 + ã(ω, 1)

}
(7)

when|ξ | > Q. And σ(ξ) = 0 when|ξ | < Q where

RG(ξ) = sign(2Ca + 3)G|2Ca+3|−1(ξ) + sign(2Cb + 3)G|2Cb+3|−1(ξ)

+ sign(2Ca − 1)G|2Ca−1|−1(ξ) + sign(2Cb − 1)G|2Cb−1|−1(ξ)−G0(ξ).

The occupation of the band due to the impurities is

N = −Q
π
{sign(2Ca + 3)β(|Ca + 3

2|) + sign(2Cb + 3)β(|Cb + 3
2|)

+ sign(2Ca − 1)β(|Ca − 1
2|) + sign(2Cb − 1)β(|Cb − 1

2|)− β( 1
2)} (8)

which is the contribution of the impurities, where the functionβ is defined asβ(x) =∑∞
k=0(−1)k/(x + k). In the other case, when the band is almost empty,Q is very large and the

integral equation can be similarly solved by iteration and the corresponding Wiener–Hopf-type
equation can be solved straightforwardly. The leading contribution to the occupation number
due to the impurities is obtained by

N = 1

πQ

(
1 +

lnQ

2πQ

)(
Ca +Cb +

3

4

)
. (9)

Similarly, we can derive the number of particles for the ferromagnetic case when the
band is nearly empty or nearly full. The integration limitsB andQ have been studied
in detail in [35,15] for thet–J model. Using the method given by Schlottmann, we
get B = − 1

π
ln{H/[πR( 2π

e
)1/2 − 1

2GπRG(
2π
e
)1/2]} with RG =

∫ Q
−Q dk Xhσ (k)e

πk and

R = 1 +
∫ Q
−Q dξ ′ σh(ξ ′) exp(πξ ′). This shows that the host determinesB(H) and the

impurities only renormalize the integration limitB in an irrelevant way since the 1/G
term in the above relation can be dropped. When the band is almost half-filled we get
Q = π [(A + 2)/(ln 2

√
2e) − 1]/(2 ln 2). Hence we have thatA >

√
2e ln 2− 2 ≈ −0.38.

This means that the Fermi level is higher for the one-dimensional electron system with
impurity. When the band is almost emptyQ is very large and we getQ = (A + 2)−1/2.



Effects of magnetic impurities in thet–J model 5439

The Fermi level must be above the bottom of the band. This is the same as the result given by
Schlottmann [35,15]. By taking into account expression (4), we know that the susceptibility
of the system with the impurities also has logarithmic corrections similar to the Heisenberg
antiferromagnet [44] and thet–J model [35] without impurity.

4. Excitation and bound states

Using the string hypotheses [35]:λn,jα = λnα +(n+1−2j) i
2 +O(exp(−δG)), n = 1, 2, . . . ,∞,

which denotesMn strings of complex spin rapidities of lengthn, corresponding to the bound
spin states in spin sectors, andq1,2

β = ±λβ ± i
2 + O(exp(−δG)), corresponding to the bound

or paired electron states in charge sectors, we get the following integral equations:

a(λ, 1) +
1

2G
σG(λ) = σ(λ) + σh(λ) + [2]σ(λ) + [1]ρ(λ)

a

(
λ,

1

2

)
+

1

2G
ρG(λ) = ρ(λ) + ρh(λ) + [1]σ(λ) +

∞∑
n=1

[n]σn(λ)

[n]ρ(λ) +
1

2G
σGn (λ) = σhn (λ) +

∞∑
m=1

Anmσm(λ)]

(10)

whereσG andρG are expressed by (3), andσn is the distribution density function ofMn strings
of complex spin rapidities of lengthn. The functionσGn (λ) is denoted by

σGn (λ) = a
(
λ,
n

2

)
+ a

(
λ,
n− 2Ca

2

)
+ a

(
λ,
n + 2Ca

2

)
+a

(
λ,
n− 2Cb

2

)
+ a

(
λ,
n + 2Cb

2

)
.

The operatorAnm has the expression

Anm ≡ [|n−m|] + 2[|n−m| + 2] + 2[|n−m| + 4] + · · · + 2[n +m− 2] + [n +m].

By Fourier transforming the above integral equations we have

σ̃ hn−1(ω) + σ̃ hn+1(ω) = 2 cosh
ω

2
(σ̃n(ω) + σ̃ hn (ω))

ρ̃(ω) + σ̃ h2 (ω) +
1

2G
exp

( |ω|
2

)
σ̃ G1 (ω) = 2 cosh

ω

2
(σ̃1(ω) + σ̃ h(ω))

σ̃ h(ω) + σ̃ h1 (ω) + 1= 2 cosh
ω

2
(ρ̃(ω) + ρ̃h(ω)) +

1

2G
exp

( |ω|
2

)
σ̃ G2 (ω)

exp

(
−|ω|

2

)
σ̃ h(ω)− ρ̃(ω) + exp

(
−|ω|

2

)
+

1

2G
exp

( |ω|
2

)
σ̃ G(ω)

= 2 cosh
ω

2
(σ̃ (ω) + σ̃ h(ω))

(11)

where the wave denotes a Fourier transform. The terms with the factor 1/(2G) correspond
to the effects of the magnetic impurities in the thermodynamical limits. These equations are
similar to the one-dimensional fermion gas [45] and the Anderson impurity [46]. They are
only different in the correction terms from the integrable narrow-band model [35] related to
the heavy-fermion systems. The distribution functions are determined by the minimization of
the thermodynamic potential. The pressure,P = −�/G, of the system has the form:

P = T [1] ln(1 + ζ−1) + T [2] ln(1 +η−1)

+
T

2G

{∫
dk ρG(k) ln(1 + ζ−1(k)) +

∫
dk σG(k) ln(1 +η−1(k))
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+
∞∑
n=1

∫
dk σGn (k) ln(1 +η−1

n (k))

}
. (12)

The term with factor 1/(2G) gives the finite-size correction of the pressure due to the
impurities. By following the notations in [35], we set thatζ = exp(ε/T ), η = exp(9/T ) and
ηn = exp(ϕn/T ). Then we obtain

ρ = − 1

2π

∂ε

∂χs

1

1 + ζ
+

1

2G
Xρ, σ

h
n =

1

2π

∂ϕn

∂χs

1

1 +η−1
n

+
1

2G
Xhσn

σ h = − 1

2π

∂9

∂χs

1

1 +η−1
+

1

2G
Xhσ

(13)

and similar expressions for the complementary functions.Xρ , Xhσ andXhσn are the finite-size
corrections which satisfy the following relations:

Xhσn +
∞∑
m=1

Anmη
−1
m X

h
σm
= [n]Xρ + σGn

(1 + ζ )Xρ + [1]η−1Xhσ +
∞∑
n=1

[n]η−1
n X

h
σn
= ρG

(1 +η−1 + [2]η−1)Xhσ + [1]Xρ = σG.

(14)

The finite-size correction of the free energy due to the impurities is

Fi = −T
2

{∫
dk ρG(k) ln(1 + ζ−1(k)) +

∫
dk σG(k) ln(1 +η−1(k))

+
∞∑
n=1

∫
dk σGn (k) ln(1 +η−1

n (k))

}
. (15)

WhenT →∞, the finite-size corrections of the free energy due to the two impurities are

Fi = T

2
{ln(ζ 9

2 (1 + ζ )
1
2 )− ln(η(1 +η)

3
2 )} Ca = Cb → 0

Fi = T

2
{ln(ζ(1 + ζ )

1
2 )− ln(η(1 +η)−

1
2 )} Ca = Cb →∞

Fi = T

2
{ln(ζ 5

2 (1 + ζ )
1
2 )− ln(η(1 +η)

1
2 )} Ca = C−1

b → 0 or∞

(16)

for some special limits of the coupling constants. This means that these special limits
are impurity-model dependent. At the low-temperature limit, the finite-size corrections
corresponding to the distribution density functions are described by

Xρ = ([0] + [2])ρG − [1]σG Xhσn = 0 n > 0
η−1Xhσ = σG − [1]ρG.

(17)

The free energy of the bulk is the same as the periodict–J model. And the impurities located at
the edges of the system give the finite-size correction of the free energy. From the asymptotic
property of the functionηn we know that [47, 48] the impurities contribute a nonlinear term
to the specific heat at the low-temperature limit. This nonlinear relation is impurity-model
dependent although it is difficult to get the exact expression. The impurities also introduce
bound states in the present system. When− 3

2 < Ca,b < −1, the bound state can be formed
by

q0 = iCa,b + i λ0 = − i

3
Ca,b − i

3

q+ = − i

3
Ca,b +

i

6
q− = − i

3
Ca,b − 5i

6
.

(18)
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This bound state carries the energy

Eboua,b = −
2(38C2

a,b + 76Ca,b + 11)

(4C2
a,b + 8Ca,b + 3)(C2

a,b + 2Ca,b − 8)
. (19)

The moment of the centre of the bound state is zero. In this case, the Kondo couplings between
the bulk and the impurities are antiferromagnetic with the repulsive impurity potentials.
When the parametersCa,b fall into the regime− 5

2 < Ca,b < − 3
2, the system also has the

bound state formed by the four imaginary modes (18) and is localized at the ends of the
system. It carries the energy (19) and the moment of the centre is zero, in which the Kondo
couplings are ferromagnetic and the impurity potentials are attractive. Obviously, by making
the transformationsq0 → −q0, λ0 → −λ0 andq± → −q± in relations (18), we also get the
boundary bound states with− 5

2 < Ca,b < −1. The moment of the centre of the boundary
bound state is zero and it also carries the energy (19). Notice that the above boundary bound
states introduced by the impurities are different from the ones related to theSU(3) invariant
t–J model [31,32].

5. Concluding remarks

In this paper, with respect to the investigations in [29, 31, 32], we have studied the impurity
model related to the traditionalt–J model which has graded FFB super-algebra. The finite-size
correction of the low-field magnetization due to the magnetic impurities is obtained. The charge
fluctuation of the system is discussed for the singlet state scattering and the thermodynamical
Bethe ansatz equations for the excited state are obtained for the impurity model. The
contribution of magnetic impurities to the free energy is derived in the thermodynamical
limit. The properties of the system in the low- and high-temperature limits are discussed. The
relation between the external field and the integral limit of the system is obtained and we find
that the Fermi level is higher for the one-dimensional electron system with impurity when the
band is almost half-filled. We have also found that the system has the boundary bound states
introduced by the impurities and formed by four imaginary modes of the rapidities, which are
different from the ones in the impurity model within the framework of theSU(3) invariant
t–J model.

The impurity part of the Hamiltonian in our model has a simple and compact form since
the scattering matrices in the bulk of the system are the tangent (or cotangent) functions of the
half moments of the electrons and the boundary scattering matrices between the impurities and
the electrons can be factorized as two terms which are similar to theR matrix of the system.
The kinetic energy in our model is dependent on the electron momentum and the impurities
make no contribution to the kinetic energy. This situation in the present model coincides with
the features of the Kondo problem in [1]. The interaction parameters of the impurities with
conduction-band electrons run from the ferromagnetic case to the antiferromagnetic case. This
is an exactly solved model in one dimension dealing with the strongly correlated electron system
with impurities and its kinetic energy is nonlinear in the electron momentum. In the Kondo
problem [49] one studies the low-temperature behaviour of a system with magnetic impurities
represented by localized spins that couple to the conduction electrons via a spin exchange
interaction. The kinetic energy of the system is linear in the conduction-band electrons, which
means that only electrons are very close to the Fermi surface.

In the magnetic impurity model (1) the impurities are coupled to the two ends of the electron
system. The integrability condition of the system imposes restrictions on the interaction
parameters between the nearest-neighbour sites of electrons and the interaction parameters
between electrons and impurities so that they take the special forms. Since in heavy-fermion
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systems the case of singlet scattering is important, we deal with this case, in detail, on the
contributions of the magnetic impurities. The finite-size corrections due to the magnetic
impurities have the factor 1/(2G), which is concordant with [50]. The low-field magnetization
of the system is derived and it means that the susceptibility also has logarithmic correction
when the impurities exist. The charge fluctuation of the system is discussed for the singlet
state scattering and the explicit expression of free energy due to the magnetic impurities is
given under the limits of the interaction with conduction electrons. When the Kondo coupling
falls into the antiferromagnetic region and the impurity potential is repulsive, or the impurity
potential is attractive but the Kondo coupling falls into the ferromagnetic region, the system
has boundary bound states composed by four imaginary modes of the rapidities in the spin
and charge sectors. The amplitudes of these imaginary modes are different, which means
the system has a nonzero wavefunction. The boundary bound states carrying the energy and
moments of the centres are zero. Notice that the main investigations in this paper concern
thermodynamic limits and the Bethe ansatz equations have been written as coupled integral
equations. It is worthwile studying the impurity model further for the finite-lattice system
related to thet–J model with the singlet states scattering. In fact, a method to calculate the
leading-order finite-size corrections to the ground state energy has been given by de Vega and
Woynarovich in [51]. Some other integrable models have also been studied using finite-size
scaling techniques [52–57]. It would also be interesting to study the present impurity model
further in the different sectors and the critical property contributed by the magnetic impurities.
Finally, we point out that the boundary bound state formed by the four imaginary modes of the
rapidities is obtained for our impurity model. We can ask the question: ‘Are there other bound
states introduced by the impurities in the model?’. It would prove a challenging problem to find
them and to consider the effects (such as magnetization, band-occupation and corresponding
energy, etc) of these bound states in the ground state of the system. We wish this question to
remain as an open problem for further investigations.
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